Chapter 1: Introduction to Expert Systems

Original by Course Technology
Modified by Ramin Halavati (halavati@ce.sharif.edu)
Objectives

- Learn the meaning of an expert system
- Understand the problem domain and knowledge domain
- Learn the advantages of an expert system
- Understand the stages in the development of an expert system
- Examine the general characteristics of an expert system
Objectives

• Examine earlier expert systems which have given rise to today’s knowledge-based systems
• Explore the applications of expert systems in use today
• Examine the structure of a rule-based expert system
• Learn the difference between procedural and nonprocedural paradigms
• What are the characteristics of artificial neural systems
What is an expert system?

“An expert system is a computer system that emulates, or acts in all respects, with the decision-making capabilities of a human expert.”

Professor Edward Feigenbaum
Stanford University
Fig 1.1 Areas of Artificial Intelligence
Expert system technology may include:

- Special expert system languages – CLIPS
- Programs
- Hardware designed to facilitate the implementation of those systems
Expert System Main Components

- Knowledge base – obtainable from books, magazines, knowledgeable persons, etc.

- Inference engine – draws conclusions from the knowledge base
Figure 1.2 Basic Functions of Expert Systems
Problem Domain vs. Knowledge Domain

- An expert’s knowledge is specific to one problem domain – medicine, finance, science, engineering, etc.
- The expert’s knowledge about solving specific problems is called the knowledge domain.
- The problem domain is always a superset of the knowledge domain.
Figure 1.3 Problem and Knowledge Domain Relationship
Advantages of Expert Systems

- Increased availability
- Reduced cost
- Reduced danger
- Performance
- Multiple expertise
- Increased reliability
Advantages Continued

- Explanation
- Fast response
- Steady, unemotional, and complete responses at all times
- Intelligent tutor
- Intelligent database
The knowledge of an expert system can be represented in a number of ways, including IF-THEN rules:

IF you are hungry THEN eat
Knowledge Engineering

The process of building an expert system:

1. The knowledge engineer establishes a dialog with the human expert to elicit knowledge.
2. The knowledge engineer codes the knowledge explicitly in the knowledge base.
3. The expert evaluates the expert system and gives a critique to the knowledge engineer.
Development of an Expert System
The Role of AI

• An algorithm is an ideal solution guaranteed to yield a solution in a finite amount of time.
• When an algorithm is not available or is insufficient, we rely on artificial intelligence (AI).
• Expert system relies on inference – we accept a “reasonable solution.”
Uncertainty

• Both human experts and expert systems must be able to deal with uncertainty.
• It is easier to program expert systems with shallow knowledge than with deep knowledge.
• Shallow knowledge – based on empirical and heuristic knowledge.
• Deep knowledge – based on basic structure, function, and behavior of objects.
Limitations of Expert Systems

• Typical expert systems cannot generalize through analogy to reason about new situations in the way people can.

• A knowledge acquisition bottleneck results from the time-consuming and labor intensive task of building an expert system.
Development of Expert Systems

• Rooted from Cognitive Studies:
 – How does human process information

• Newell/Simon Model (GPS)
 – Long Term Memory: IF-Then Rules
 – Short Term Memory: Current Facts
 – Inference Engine/Conflict Resolution
Rule Examples

- IF the car doesn’t run and the fuel gauge reads empty THEN fill the gas tank.
- IF there is flame, THEN there is a fire.
- IF there is smoke, THEN there may be a fire.
- IF there is a siren, THEN there may be a fire.
Expert Knowledge

• Base Knowledge / Expert Knowledge
 – Book Rules / Heuristics and Experiences (secrets!)
 • Experts usually score almost similar to novices in brand new problems.
 – Chess Rules / Chess Master Patterns
Early Expert Systems

• DENDRAL – used in chemical mass spectroscopy to identify chemical constituents
• MYCIN – medical diagnosis of illness
• DIPMETER – geological data analysis for oil
• PROSPECTOR – geological data analysis for minerals
• XCON/R1 – configuring computer systems
Expert Systems

Applications and Domains

<table>
<thead>
<tr>
<th>Class</th>
<th>General Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Assemble proper components of a system in the proper way.</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Infer underlying problems based on observed evidence.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Intelligent teaching so that a student can ask why, how, and what if questions just as if a human were teaching.</td>
</tr>
<tr>
<td>Interpretation</td>
<td>Explain observed data.</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Compares observed data to expected data to judge performance.</td>
</tr>
<tr>
<td>Planning</td>
<td>Devise actions to yield a desired outcome.</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Predict the outcome of a given situation.</td>
</tr>
<tr>
<td>Remedy</td>
<td>Prescribe treatment for a problem.</td>
</tr>
<tr>
<td>Control</td>
<td>Regulate a process. May require interpretation, diagnosis, monitoring, planning, prognosis, and remedies.</td>
</tr>
</tbody>
</table>
Considerations for Building Expert Systems

• Can the problem be solved effectively by conventional programming?
 – Ill-Structured Problems / Rigid Control

• Is the domain well bound?
 – Headache: Neurochemistry, biochemistry, chemistry, molecular biology, physics, yoga, exercise, stress management, psychiatry, …

• Is there a need and a desire for an expert system?
 – The Traffic Light Example
Considerations for Building Expert Systems

• Is there at least one human expert who is willing to cooperate?
 – Their faults may be revealed.
 – Their secrets are revealed.
 – They have different ideas.

• Can the expert explain the knowledge to the knowledge engineer can understand it.
 – How do you move your finger?
 – Medicine

• Is the problem-solving knowledge mainly heuristic and uncertain?
 – If not, why expert system?
Expert Systems
Languages, Shells, and Tools

• Conventional computer programs generally solve problems having algorithmic solutions.

• Tight interweaving of data and knowledge results in rigid control flow control.

• More advance languages limit the usage, but are easier for the limited area.
Languages, Shells, and Tools

- Expert system languages are post-third generation.

- Procedural languages (e.g., C) focus on techniques to represent data.

- More modern languages (e.g., Java) focus on data abstraction.

- Expert system languages (e.g., CLIPS) focus on ways to represent knowledge.
Elements of an Expert System

- User interface – mechanism by which user and system communicate.
- Exploration facility – explains reasoning of expert system to user.
- Working memory – global database of facts used by rules.
- Inference engine – makes inferences deciding which rules are satisfied and prioritizing.
Elements Continued

- Agenda – a prioritized list of rules created by the inference engine, whose patterns are satisfied by facts or objects in working memory.

- Knowledge acquisition facility – automatic way for the user to enter knowledge in the system bypassing the explicit coding by knowledge engineer.

- Knowledge Base!
Production Rules

• Knowledge base is also called production memory.

• Production rules can be expressed in IF-THEN pseudocode format.

• In rule-based systems, the inference engine determines which rule antecedents are satisfied by the facts.
An Example from MYCIN

- IF
 - The site of the culture is blood and
 - The identity of the organism is not known with certainty, and
 - The stain of the organism is gramnegm and
 - The morphology of the organism is rod, and
 - The patient is seriously burned.

- THEN
 - There is a weakly suggestive evidence (.4) that the identity of the organism is pesudomonas.
An Example from XCON/R1

- **IF**
 - The current context is assigning devices to Unibus modules, and
 - There is an unassigned dual-port disk drive, and
 - The type of controller it requires is known, and
 - There are two such controllers, neither of which has any devices assigned to it, and
 - The number of devices that these controllers can support is known,

- **THEN**
 - Assign the disk drive to each of the controllers, and
 - Note that the two controllers have been associated and each supports one drive.
Structure of a Rule-Based Expert System
General Methods of Inferencing

• Forward chaining – reasoning from facts to the conclusions resulting from those facts – best for prognosis, monitoring, and control.
 – primarily data-driven

• Backward chaining – reasoning in reverse from a hypothesis, a potential conclusion to be proved to the facts that support the hypothesis – best for diagnosis problems.
 – primarily goal driven
Main Inference Engine Cycle

- While Not DONE
 - If there are active rules, Conflict Resolution.
 Else DONE.
 - Act
 - Match
 - Check for Halt
- End of While
- Accept a new user command.
Mathematical Roots of Rule Based Systems

• Post Production Systems

• Markov Algorithm

• Rete Algorithm
Post Production System

- Basic idea – any mathematical / logical system is simply a set of rules specifying how to change one string of symbols into another string of symbols.

- Basic limitation – lack of control mechanism to guide the application of the rules.
Markov Algorithm

- An ordered group of productions applied in order or priority to an input string.

- If the highest priority rule is not applicable, we apply the next, and so on.

- An efficient algorithm for systems with many rules.
Rete Algorithm

- Functions like a net – holding a lot of information.

- Much faster response times and rule firings can occur compared to a large group of IF-THEN rules which would have to be checked one-by-one in conventional program.

- Takes advantage of temporal redundancy and structural similarity.

- Drawback is high memory space requirements.
Programming Paradigms

• Procedural (sequential)
 – Functional/Imperative

• None Procedural
Procedural Paradigms

- Algorithm – method of solving a problem in a finite number of steps.

- Procedural programs are also called sequential programs.

- The programmer specifies exactly how a problem solution must be coded.
Imperative Programming

- Focuses on the concept of modifiable store – variables and assignments.

- During execution, program makes transition from the initial state to the final state by passing through series of intermediate states.

- Provide for top-down-design.

- Not efficient for directly implementing expert systems.
Nonprocedural Paradigms

- Do not depend on the programmer giving exact details how the program is to be solved.

- Declarative programming – goal is separated from the method to achieve it.

- Object-oriented programming – partly imperative and partly declarative – uses objects and methods that act on those objects.

- Inheritance – (OOP) subclasses derived from parent classes.
Nonprocedural Languages

- **Declarative**
 - Object Oriented
 - Java, C++, C#
 - Logic
 - Rule-Based
 - Frame-Based
- **Nondeclarative**
 - Induction-Based
 - PROLOG
 - CLIPS
 - OPS5
Artificial Neural Systems

In the 1980s, a new development in programming paradigms appeared called artificial neural systems (ANS).

• Based on the way the brain processes information.

• Models solutions by training simulated neurons connected in a network.

• ANS are found in face recognition, medical diagnosis, games, and speech recognition.
Neuron
Processing Element

\[I = \text{Neuron Input}_i = \sum_j W_{ij} I_j \]

\[O = \text{Neuron Output} = \frac{1}{1 + e^{-(I - \theta)}} \]
A Back-Propagation Net

Output Layer

Hidden Layer

Input Layer
Figure 1.12 Hopfield Artificial Neural Net
ANS Characteristics

- ANS is similar to an analog computer using simple processing elements connected in a highly parallel manner.

- Processing elements perform Boolean / arithmetic functions in the inputs

- Key feature is associating weights w/each element.
Advantages of ANS

- Storage is fault tolerant
- Quality of stored image degrades gracefully in proportion to the amount of net removed.
- Nets can extrapolate and interpolate from their stored information.
- Nets have plasticity.
- Excellent when functionality is needed long-term w/o repair in hostile environment – low maintenance.
Disadvantage of ANS

- No Explanation Facility.
- Requires a lot of examples for training.
- The training result cannot be (easily) analyzed.
MACIE

- An inference engine called MACIE (Matrix Controlled Inference Engine) uses ANS knowledge base.

- Designed to classify disease from symptoms into one of the known diseases the system has been trained on.

- MACIE uses forward chaining to make inferences and backward chaining to query user for additional data to reach conclusions.
Summary

• During the 20th Century various definitions of AI were proposed.
• In the 1960s, a special type of AI called expert systems dealt with complex problems in a narrow domain, e.g., medical disease diagnosis.
• Today, expert systems are used in a variety of fields.
• Expert systems solve problems for which there are no known algorithms.
Summary Continued

- Expert systems are knowledge-based – effective for solving real-world problems.
- Expert systems are not suited for all applications.
- Future advances in expert systems will hinge on the new quantum computers and those with massive computational abilities in conjunction with computers on the Internet.